- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gillespie, Maria (2)
-
Reimer-Berg, Andrew (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We give a combinatorial proof of a recent geometric result of Farkas and Lian on linear series on curves with prescribed incidence conditions. The result states that the expected number of degree-d morphisms from a general genus-g, n-marked curve C to Pr, sending the marked points on C to specified general points in Pr, is equal to (r + 1)g for sufficiently large d. This computation may be rephrased as an intersection problem on Grassmannians, which has a combinatorial interpretation in terms of Young tableaux by the Littlewood-Richardson rule. We give a bijection, generalizing the RSK correspondence, between the tableaux in question and the (r+1)ary sequences of length g, and we explore our bijection’s combinatorial properties. We also apply similar methods to give a combinatorial interpretation and proof of the fact that, in the modified setting in which r = 1 and several marked points map to the same point in P1, the number of morphisms is still 2g for sufficiently large d.more » « less
-
Gillespie, Maria; Reimer-Berg, Andrew (, Algebraic Combinatorics)
An official website of the United States government

Full Text Available